在结合邱睿的意见,并再三确认没有进一步的风险后。
经过海军方面讨论,最终决定,把这艘蛙人输送暂时留在他这边,以做进一步的逆向解析与改造实验工作。
而许远山中校,则是带着拷贝出的数据,紧急赶回沪上复命去了。
等实验室重新安静下来后,邱睿盯着屏幕上雪茄型的蛙人输送艇,摩挲着下巴陷入沉思。
这玩意虽然长了点,但应该还是能塞到猛犸上的。
实在不行就像当初安装无人机一样,直接驮在车顶上。
反正现在猛犸主要靠电驱动,后排气筒一封闭,吃水再深一点也不要紧。
只要能保证这玩意跟着升级就行。
而蛙人输送艇本身,他也打算做一些大刀阔斧的改造。
比如,其上原本用于搭载蛙人的半封闭水密耐压部分,他准备全部拆除掉,换上其他潜航设备。
或者干脆改成一个模块化承载平台,可根据不同的任务更换不同的模块。
唯一的问题是,要怎么控制?
毕竟以后主要还是以无人操控的方式为主,那么如何通讯就成了首要难题。
声波利用水分子的振动,可以在水中传播很远。
但电磁波通过电磁感应传播,在水下、尤其是海水这种富含金属导电离子的导体中,会很快衰减。
可能会有人好奇,现代通信主要依赖电磁波,潜伏在大洋之下的潜艇是如何与基地通信的呢?
答案是,在水下时,很难实现双向通信。
电磁波的频率越高,衰减也就越快。
人们日常用于通信的电磁波,一般是300mhz~30Ghz的高频信号,它在水中会迅速衰减,几乎无法传播。
如果改用低频电磁波,比如3khz的VLF甚低频电磁波,大概能穿透几十米的海水。
这仍然达不到潜艇的工作深度,但只要在艇上释放一个通信浮标,就能勉强进行通信了。
只是这样并不方便,而且信号丢帧也比较频繁,所以牛逼人又想到了,可以利用更低频的电磁波,来进行通信传输。
于是3~100hz的ELF极低频电磁波应运而生。
这玩意能在海水中穿行数百米,完全足够潜艇的工作深度。
但这世上本就没有什么完美的技术,这玩意的缺点也很明显。
潜艇只能接收这种信号,无法回传。
而且接收天线也不小,除非是大型潜艇,体积稍小一点的潜航器上根本容纳不下。
不过相比于接收方,发送方就更恐怖了。
几十赫兹的极低频电磁波,波长达到数千公里,想发送这种电磁波,需要一个长宽达数十公里的超大天线。
全世界的极低频信号发送站,一只手就能数过来。
潜艇肯定是带不了这么大的发送天线,所以只能实现单向通信。
要想回复,还是得上浮,然后进行高频通信……
想到这,邱睿不禁皱眉。
难道要像现在的无人潜航器那样,也拽根电缆在屁股后面?
那还有啥竞争力,咋可能干得过各大军工的竞品!
思来想去,邱睿一时也没想到什么好办法,只能暂时作罢。
算了,还是先想办法把改造的零配件弄到手吧。
说不定跟着猛犸升级几次后,就解决了呢……
本章未完,点击下一页继续阅读。